If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6p^2-6p-p-20=0
We add all the numbers together, and all the variables
6p^2-7p-20=0
a = 6; b = -7; c = -20;
Δ = b2-4ac
Δ = -72-4·6·(-20)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-23}{2*6}=\frac{-16}{12} =-1+1/3 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+23}{2*6}=\frac{30}{12} =2+1/2 $
| 8x/4=20 | | -7x-5=-5x-13 | | 2-1v=3v-18 | | 7x-16=2x+29 | | 3x^+2x-4=0 | | 1/4x+3/7x=57/7 | | 33/3x=7.5 | | 2x+22=x+19 | | 7a-3=2a+37 | | 5(x-(4x-5))=3-2x | | (33)/3x-2=5.5 | | 3y+1=y+17 | | 5(-4+4x)=-160 | | 3x+12=-x+24 | | 14-6m+8=64 | | 42=6-6x | | -3-7x=x+17/5 | | 3m/8=120 | | 11x-1=6x+9 | | 2/5=26/x | | -8x+14=-4x-18 | | (x-3)÷3=x÷5 | | 7x-3=4-5 | | 4(5x-3=28 | | 0,5^x=0,125 | | 2(4z-9)=62 | | 14z−13z=17 | | 6x-14=7x-10 | | 2k+2k=12 | | c+3c=20 | | 8x+19=3x+59 | | -5x-4x=-72 |